Ручной универсальный дефектоскоп на фазированных решетках АВГУР-АРТ 2020

 

Применение фазированных решёток, TOFD и технологий цифровой фокусировки в режимах ручного, механизированного и автоматизированного контроля

 

Дефектоскоп АВГУР-АРТ 2020


Повышение качества ЦФА-изображения отражателей за счёт применения антенной решетки с адаптивным протектором

 

       Поверхность объектов контроля может быть неровной по причине её конструктивных особенностей. После монтажа, в процессе эксплуатации или подготовки к контролю изначально ровная поверхность объекта контроля может утратить это свойство. Многие методы восстановления изображения отражателей с использованием ультразвуковых антенных решёток исходят из того, что поверхность объекта контроля прямая линия. В настоящее время в практике ультразвукового контроля широко применяется метод цифровой фокусировки антенной решётки (ЦФА), который предполагает регистрацию эхосигналов при излучении и приёме всеми парами антенной решётки и восстановления по измеренным эхосигналам изображения отражателей методом комбинированного SAFT (C-SAFT). 

 

       Проведение контроля со стороны неровной поверхности может привести к очень сильному искажению восстановленного ЦФА-изображения [2]. В методах семейства ЦФА можно учесть неровную поверхность объекта и сформировать неискажённые изображения отражателей. Основная проблема в получении информации о профиле поверхность контролируемого объекта. Для этого разработаны приспособления, позволяющие по время контроля получать профиль поверхности [1] для его учёта в методе ЦФА.

 


Водородное растрескивание при воздействии высоких температур (HTHA) характеризуется малым размером дефектов на начальной стадии (порядка 0,1 мм). Такие дефекты характерны для нефтеперерабатывающей промышленности и очень опасны.
 
Для выявления водородного растрескивания применяется метод цифровой фокусировки антенны (ЦФА, TFM), который может быть реализован с применением дефектоскопов ГЕККОН или АВГУР-АРТ и фазированной решеткой с частотой 10 МГц. За счет многоракурсного озвучивания области дефектов обеспечивается надежное выявление и образмеривание зоны повреждения.
 
В то же время, дополнительную информацию о дефектах типа водородного растрескивания можно получить и по каналам TOFD, которые реализуются с применением указанных выше дефектоскопов.
 
 
Выявление водородного растрескивания с помощью фазированных решеток
Выявление водородного растрескивания с помощью фазированных решеток
 
Фотографии М2М (https://www.m2m-ndt.com/en/htha/)

Задача 

Для демонстрации возможностей визуализации дефектов в объектах с высоким коэффициентом поглощения в лаборатории по применению ООО "НПЦ "ЭХО+" проведена серия экспериментов с визуализацией отражателей в образце СО-1. 

 

На рисунке ниже показана фотография образца СО-1, выполненного из оргстекла. Стрелкой красного цвета показана линия, вдоль которой происходило сканирование антенной решёткой. 


Визуализация образца СО-1 в режиме ЦФА-Х 

 

Аппаратура и объект исследования


 

Сканирование выполнялось с применением дефектоскопа АВГУР-АРТ и сканера с шаговым двигателем. Выполнялись измерения при 120 положениях с шагом порядка 2 мм.

  

Амплитуда зондирующего сигнала около 50 вольт. Излучающая электроника системы АВГУР-АРТ способна излучать сложные сигналы (фазоманипулированные и линейные частотно-модулированные).

 

После сканирования проводилась обработка методом цифровой фокусировки антенны со сканированием (ЦФА-Х).

 

 

Результат визуализации в режиме ЦФА

 

 

 

 

На рисунке ниже показано ЦФА-изображение, восстановленное по эхосигналам с компенсированным поглощением 0.02 1/мм. Контрастность изображения 0.1. Это обозначает то, что при превышении амплитуды пиксела 10% от максимума изображения, пиксел показывается красным цветом.

Видно, что фронтальная разрешающая способность практически не зависит от глубины и приближается к размеру пластины, то есть к 0.5 мм.

 

Визуализация образца СО-1 в режиме ЦФА-Х

 

 

Результат визуализации в режиме ЦФА со сжатием сложных сигналов


 

Регистрация сложных эхосигналов с помощью системы АВГУР-АРТ происходила следующим образом. Было рассчитано двадцать наборов, в каждом из которых было 32 псевдоортоганальных сигнала, используемых в технологии CDMA . Измерение эхосигналов проходило в режиме FMC (двойного сканирования, ЦФА), но только каждому элементу был приписан свой кодовый сигнал (сложный сигнал). 

 

Цель применения сложных сигналов состоит в увеличении чувствительности, а также в существенном сокращении на порядок времени сбора данных за счет сокращения числа циклов излучения-приема фазированной решетой. 


 

На рисунунке ниже показано ЦФА-изображение, восстановленное по эхосигналам с компенсированным поглощением 0.02 1/мм, которые были «сжаты» с помощью согласованной фильтрации. Контрастность изображения по-прежнему 0.1. Блики самых близких к поверхности отверстий отсутствуют, так как эхосигналы рассматривались в диапазоне от 20 до 150 мкс. При длине кода 15 периодов длина зондирующего импульса равна 3.0 мкс, что приводит к увеличению размеров «мёртвой зоны». Блик верхней поверхности образца при однократном отражении от дна не просматривается, но стал различим блик отверстия на глубине 45 мм при однократном отражении от дна. По сравнению с изображением на Рис. 2 отношение сигнал шум возросло примерно на 10 дБ.

 
Визуализация образца СО-1 в режиме ЦФА-Х
 
 
Дальнейшее повышение числа импульсов в сложных сигналах приводит к еще большему увеличению отношения сигнал/шум.
 
Визуализация образца СО-1 в режиме ЦФА-Х
 
 

Вывод

 
  1. Показана эффективность визуализации внутреннего сечения при использовании обработки ЦФА-Х, при использовании дефектоскопа АВГУР-АРТ
  2. Для выравнивания чувствительности по всему изображению целесообразно применять компенсацию поглощения

Лаборатория по применению оборудования ООО "НПЦ "ЭХО+" провела демонстрационный контроль образца сварного соединения эксцентрика насоса буровой установки.
 
Детали эксцентрика выполнены из литой стали и могут содержать внутренние дефекты. Само оборудование подвержено чрезвычайно интенсивным нагрузкам и требуется высокая чувствительность при выявлении дефектов основного и напавленного металла.
 
Тестовый контроль образца был проведен с применением дефектоскопа АВГУР-АРТ, поддерживающего технологию ФАР и ЦФА, а также дефектоскопа АВГУР-Т, поддерживающего технологию TOFD.
Ультразвуковой контроль сварного соединения эксцентрика

 
При эксплуатации трубопроводов и оборудования уплотнительная поверхность фланцев подтвергается коррозионному износу из-за действия транспортируемой среды.
 
Применение технологии фазированных решеток для контроля уплотнительных поверхностей фланцев 
 
При подготовке к планово-предупредительному участка трубопровода желательно заранее знать - какие фланцы изношены и предназначены для замены.
Для проведения контроля состояния уплотнительной поверхности фланцев ООО "НПЦ "ЭХО+" предлагает применять технологию ультразвуковых фазированных решеток. Для контроля может быть использован дефектоскоп АВГУР-Арт или ГЕКККОН, поддерживающий как минимум 32, а желательнно 64 фазируемых канала - с целью обеспечить высокое разрешение при распространении ультразвука на большое расстояние.
 
Для этого по доступной поверхности фланца (например по конусной поверхности) выполняется сканирование специализированным сканером. При построении трехмерной модели фланца по чертежу обеспечивается идентификация плоскостей, от которых отражается ультразвуковой луч и выполняется оценка состояния уплотнительной поверхности (степень износа). Для этого необходимо провести тренинг оператора на ряде модельных изображений дефектов.
 
Применение технологии фазированных решеток для контроля уплотнительных поверхностей фланцев
 
Применение специализированной методики позволяет прогнозировать какие детали трубопровода, будут предназначены для замены и даже избежать разборки фланцевых соединений.
 
 

Скачать дистрибутив:

 
 
После завершения установки потребуется отправить созданный файл на адрес support@echoplus.ru для генерации лицензионного ключа.
Пример данных для тестирования импортируется в базу данных при двойном щелчке на файл: Данные для импорта АВГУР-Анализ.adp

 
Программное обеспечение АВГУР-АНАЛИЗ разработано с использованием систем управления базами данных. Предназначено для хранения, визуализации, обработки, анализа данных ультразвукового контроля и формирования заключений по предварительно подготовленным шаблонам. Применяется в организациях, занимающихся ультразвуковым неразрушающим контролем.
 

Основные особенности программы АВГУР-Анализ:

  • Поддерживается импорт данных из множества систем ультразвукового контроля (Российских и импортных)
  • Измерительные маркеры
  • Анализ данных ФАР, ЦФА, TOFD, АВИК
  • Редактор эскизов объекта контроля, отображение дефектограмм
  • А,В,С,D,S - развертки
  • Stripchart – представления данных контроля с синхронизированными маркерами
  • Полуавтоматическое образмеривание дефектов
  • Централизованная база данных контроля
  • Представление данных TOFD и обработка данных TOFD
  • Представление данных коррозии в виде карт толщины
  • Фильтрация, коррекция данных
 
 
Скачать буклет: -ANALIZ.pdf [1.76 Mb]
 
 
 
Программное обеспечение АВГУР-Анализ

Программное обеспечение АВГУР-Анализ
Программное обеспечение АВГУР-Анализ
Программное обеспечение АВГУР-Анализ
Программное обеспечение АВГУР-Анализ

Программное обеспечение АВГУР-Анализ
Программное обеспечение АВГУР-Анализ
 
 

Видео примеры работы функций программного обеспечения АВГУР-Анализ

 
Работа функции полуавтоматического образмеривания дефектов:  
 
Работа функции представления данных в виде карты коррозии
 
 
 
Измерение разницы фаз бликов
 
 
 
Работа функций анализа данных TOFD
 

В ООО "НПЦ "ЭХО+" проведены испытания дефектоскопов с фазированными решетками для контроля сварных соединений мостовых металлоконструкций.
 
Применялись дефектоскопы Геккон и АВГУР-АРТ на стыковых, тавровых сварных соединениях и сварных соедиинениях контактной сварки упоров Нельсона.


7-10 ноября 2018 года проведены испытания средств для сплошной ультразвуковой толщинометрии. 
 
Испытания проводились на Бованенковском НГКМ ООО "Газпром добыча Надым"Для решения задачи сплошной толщинометрии применялся дефектоскоп на фазированных решетках ГЕККОН и двухкоординатный сканер Хамелеон.


В журнале «В мире НК» № 4(66) (декабрь 2014) опубликована статья «Сплошная ультразвуковая толщинометрия основного металла и сварных швов» (авторы: А. Е. Базулин, Х. Бенитес, В. В. Пронин, Д. С. Тихонов, О. О. Шнель)

В мае 2014 года ООО "НПЦ "ЭХО+" выполнило поставку на ОАО "Силовые машины" установки для автоматизированного ультразвукового контроля с использованием технологии цифровой фокусирующей антенны кольцевых сварных соединений толщиной до 205 мм роторов сварных.

ООО «НЦП «ЭХО+» совместно с Dekra (Швеция) и Tecnatom (Испания) аттестованы методики и оборудование для выполнения сплошной ультразвуковой толщинометрии для ЛАЭС.  Объектом контроля являются перлитные трубопроводы питательной воды с внешним диаметром 159 – 426 мм и толщиной стенки 5,5 – 60 мм.

EDDYFI

EDDYFI (включает компанию M2M) разрабатывает, производит и продает ультразвуковые и вихретоковые дефектоскопы для неразрушающего контроля и медицинского применения. Современные технологии воплощены в совершенных приборах с дружественным пользовательским интерфейсом.  

GEKKKO (ГЕККОН). Ультразвуковой дефектоскоп на фазированных решётках

арт. D0170003

  Скачать брошюру.  Геккон.pdf [1.04 Mb]   Дефектоскоп Геккон зарегистрирован как тип средств измерений. Свидетельство об утверждении типа FR.C27.003.A № 66918.   FR.C27.003.A № 66918.pdf [3.19 Mb]   Скачать руководство по эксплуатиации на русском языке Rukovodstvo-po-ekspluatacii.pdf [12.83 Mb]  
    GEKKO  

Ультразвуковой дефектоскоп GEKKO на фазированных решётках 

Дружелюбный в использовании: ПО Gekko было разработано для операторов любого уровня. Пошаговый интерфейс меню упрощает работу и снижает риск ошибок. Интерефейс программного обеспечения переведен на русский язык.


Ультрасовременный! Gekko

первый в мире дефектоскоп на фазированных решётках, который выполняет Цифровую Фокусировку Антенны (ЦФА) с фазированными решётками в реальном времени

GEKKO 

также поддерживает большинство методов ультразвукового контроля и использует возможности последней версии программы моделирования CIVA

Прочный и удобный. 

Сенсорный экран, IP66 и работа от батарей, GeKKO разработан для полевого применения.

 

 

Построение изображения в режиме В-скан

 

Датчики на фазированной решетке (ФАР) состоят из множества пьезоэлектрических элементов, которые могут активироваться последовательно или с задержкой по времени. Акустические поля от нескольких элементов накладываются друг на друга (формируется так называемый виртуальный датчик). Таким образом полученное акустическое поле можно перемещать (линейное сканирование) или вращать его (секторное сканирование). Прибор позволяет генерировать как продольные, так и поперечные волны, а также поверхностные и головные. Электронная фокусировка акустического поля на заданной глубине или диапазоне глубин позволяет воспроизводить результаты В-сканирования (поперечное сечение перпендикулярно поверхности) с высоким разрешением.

 

  

 EDDYFI (M2M) - Ультразвуковые дефектоскопы ГЕККОН (GEKKO) и БОГОМОЛ (MANTIS)

 

 

 

Цифровая фокусировка антенны или TFM

 

EDDYFI (M2M) - Ультразвуковые дефектоскопы ГЕККОН (GEKKO) и БОГОМОЛ (MANTIS) 


 

Этот метод предусматривает взаимодействие всех элементов решетки и всех импульсов в конкретной области сканирования. В результате чего, если применяется датчик ФАР с 64 элементами, формируется В-скан с очень широким пространственным разрешением в пределах одной длины волны. В секунду возможно получение до 25 кадров, что обеспечивает изображение в реальном времени. Размер дефектов определяется при помощи курсоров. В примере показан В-скан ряда боковых отверстий диаметром 1.5м м пометоду TFM. В результате сканирования диаметр отверстий определен верно.

 

 

Трехмерная акустическая визуализация (3D-томография)

Путем механического перемещения линейного датчика ФАР формируется множество отображений В-сканов, что обеспечивает получение трехмерных данных. Эти данные могут быть визуализированы в так называемом С-скане (вид сверху исследуемого объекта). Передвигая вертикальный курсор в С-скане можно выбрать соответствующий В-скан. В В-скане для выбора соответствующего А-скана используется вертикальный курсор.

 


 

3D-результаты исследования: А-скан, В-скан, С-скан

     

 

Дефектоскоп GEKKO также позволяет осуществлять контроль изогнутых поверхностей. Эта функция делает возможным, к примеру, контролировать продольные сварные швы на трубах и сварные швы приварки патрубков. В- и С-сканы показывают точное расположение дефектов в пространстве.  

EDDYFI (M2M) - Ультразвуковые дефектоскопы ГЕККОН (GEKKO) и БОГОМОЛ (MANTIS)

EDDYFI (M2M) - Ультразвуковые дефектоскопы ГЕККОН (GEKKO) и БОГОМОЛ (MANTIS)
 
 

Меню

 

Интуитивный интерфейс меню дефектоскопа упрощает настройку параметров и работу с прибором

 

EDDYFI (M2M) - Ультразвуковые дефектоскопы ГЕККОН (GEKKO) и БОГОМОЛ (MANTIS)


Главное меню

 

Используя набор параметров в разделе «Мастер настройки»можно создавать пользовательские настройки. Эти

настройки можно сохранить в «Применениях ». Результаты измерений сохраняются в разделе «Инспекции». Набор

параметров из «Мастера настройки» удалить невозможно,что обеспечивает надежную исходную базу

 

 

Раздел "Оборудование"

 

-выбор объектов исследования

-выбор преобразователей

-выбор сканнеров и позиционных кодировщиков

Все параметры и фото могут быть сохранены и загружены

 

Меню "Параметры УЗ-контроля"

 

Настройка параметров для выбранного типа B

сканирования (линейное, секторное или TFMсканирование), расположение датчика для корректного покрытия акустического поля

-Выбор сектора захвата данных, включая тип,расположение и пороговое значение

- Настройка временной и угловой регулировки чувствительности ФАР, и одноэлементных датчиков 

 

 

 

Меню "Конфигурация"

 

Опции сканирования: выбор типа сканирования (по текущему времени или датчику положения), привязки к объекту, датчиков, а также групп датчиков, щоны сканирования и значения шага

-Опции отображения: выбор типа изображения (A-, B-, C-,D-скан), TOFD-скан

-Подготовка отчета исследования

 

Комбинация методов

Несколько датчиков могут работать параллельно и комбинация из нескольких задач может выполняться

одновременно. Для исследования сварных швов широко применяется двустороннее прозвучивание. Часто этот метод комбинируют с методом TOFD, что позволяет точно определить глубину залегания дефекта путем измерения разницы во времени возврата волн. Работа с несколькими датчиками предполагает наличие у сканера различных кареток для датчиков, а также позиционного кодировщика. Имеются как ручные, так и автоматизированные датчики.


 


 

Технические характеристики

Габаритные размеры

408 мм x 284 мм х 130 мм

Вес

6.6 кг( включая 2 акккумулятора)

Питание

2 Li-ionбатареи (возможна горячая замена)

Время работы от аккумулятора

Не менее 3,5 часа

Внутренняя память

128 Гб

Разъемы

1 IPEX разъем для датчика ФАР,

64 каналов

4 Lemo00 разъема для УЗК

3 входа для кодировщиков положения

1 VGAВыход

3 USB2

Ethernet,wifi

Дисплей

10.4"(диагональ)сенсорный

1024x768пкс.разрешение

яркость:400кд/m2

Генератор импульсов

Отрицательный прямоугольный импульс, от 30 до 1250 нс

10 до 100 В для ФАР

10 до200 В для обычного УЗК

Частота повторения импульсов: от 1 до 10 кГц

 

Макс. количество законов фокусировки

4069

Оцифровка по глубинам

 

до 65000 выборок

Диапазон частот

3.1 до 100 МГц

Сигнал

До 64 раз

Усиление

аналоговый 0to46dB

цифровой-40to+40dB

Входной импеданс

50Ω

Пропускная способность 3 дБ

0.55 до 14.3МГц для ФАР

0.60 до 2 5МГц для стандартного УЗК

 
 
 

Разрешительная документация:

  • ГОСТ Р 50.05.13-2019 Ультразвуковой контроль сварных соединений с примененим технологий фазированных решеток. Порядок проведения
  • СТО ГАЗПРОМ 2-2.4 - 083 - 2006 Инструкция по неразрушающим методам контроля качества сварных соединений при строительстве и ремонте промысловых и магистральных газопроводов 

 

Примеры применения:

1. Контроль сварных соединений мостовых конструкций. Посмотреть
2. Контроль угловых швов вварки штуцеров, фланцев, бобышек с применением ультразвуковых фазированных решеток. Посмотреть
 
3. Сплошная толщинометрия промысловых газопроводов. Посмотреть
 
4. Выявление водородного растрескивания с помощью ультразвуковых фазированных антенных решеток. Посмотреть
 
5. Ультразвуковой контроль резервуаров методами ФР и TOFD Посмотреть

АВГУР-АРТ 

 
Многоканальный ультразвуковой дефектоскоп с применением фазированных решеток и технологий цифровой фокусировки антенны.
 

Дефектоскоп АВГУР-АРТ Р в портативном исполнении поставляется в виде моноблока, включающего многоканальную электронику в конфигурации от 32х32 до 64х128PR с дополнительной поддержкой до 2 пар каналов TOFD. 

Дефектоскоп АВГУР-АРТ
 
 
 

 

Дефектоскоп ультразвуковой многоканальный с цифровой фокусировкой и автоматизированным сканированием антенными решетками АВГУР-АРТ предназначен для:
- выявления и визуализации несплошностей, определения их размеров и  координат, амплитуд эхосигналов.
- проведения автоматизированного ультразвукового контроля (АУЗК) сварных соединений и основного металла оборудования, деталей, трубопроводов и прочих изделий из металлов, их сплавов и других материалов, включая объекты из перлитных и аустенитных сталей толщиной от 6 до 500 мм. 
 
 
Контроль с использованием дефектоскопа АВГУР-АРТ может проводиться на объектах, находящихся как в процессе сооружения (изготовления, строительства, монтажа), так и в процессе эксплуатации.
 
Принцип действия дефектоскопа основан на акустическом эхо-методе неразрушающего контроля с применением антенных решеток (АР). Дефектоскоп работает в режиме цифровой фокусировки антенны (ЦФА), обладающем рядом преимуществ по сравнению с режимом фазированной решетки (ФР). 
 
Дефектоскоп поддерживает сбор данных по 64 каналам в режиме ЦФА. Дефектоскоп реализует режим работы TOFD.
 
Режим ЦФА – это технология получения акустических изображений со сплошной фокусировкой во всех точках изображения. В режиме ЦФА на первом этапе выполняется сбор данных при переборе всех комбинаций излучатель-приемник для линейной АР, а на втором этапе выполняется математическая обработка полученных данных с применением алгоритма комбинационный SAFT (C-SAFT). При использовании ЦФА обеспечивается одинаковая и высокая разрешающая способность по всему изображению; когерентное изображение формируется только в одном слое. Альтернативные наименования режима ЦФА в зарубежных источниках – Full Matrix Capture (FMC) или Sampling Phased Array.
 
Для обеспечения высокой разрешающей способности и повышения отношения сигнал/шум при контроле толстостенных объектов используются два варианта ЦФА с синтезированием апертуры за счет прецизионного механического перемещения АР вдоль и поперек оси сварного соединения; затем выполняется совместная математическая обработка полученных эхосигналов применением алгоритмов ЦФА-Х, ЦФА-Y, ЦФА-XY.
ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ ДЕФЕКТОСКОПА АВГУР-АРТ 
Программа «Регистрация АВГУР-АРТ» – страница проведения настройки и страница проведения контроляПрограмма «Регистрация АВГУР-АРТ» – страница проведения настройки и страница проведения контроля          Программа «Анализ данных» – общий видПрограмма «Анализ данных» – общий вид          Программа «Визуализации схем контроля TOFD»Программа «Визуализации схем контроля TOFD»
Дефектоскоп АВГУР-АРТ оснащен программным обеспечением (ПО), которое осуществляет управление работой дефектоскопа, сбор, систематизированное долговременное хранение и обработку данных с использованием алгоритма C-SAFT и других методов. В пакет ПО дефектоскопа входит  программа «Регистрация АВГУР-АРТ», предназначенная для настройки параметров контроля, визуализации изображений несплошностей, сбора данных контроля, программа «Поверка АВГУР-АРТ», предназначенная для проверки параметров приемо-передающего тракта дефектоскопа, применяемых АР и программа «Анализ данных», предназначенная для обработки и визуализации данных АУЗК.
 
ПО АВГУР-АРТ устанавливается на управляющем компьютере и на рабочем месте  для обработки и архивирования данных.
 
C дефектоскопом АВГУР-АРТ применяются сканирующие устройства, которые позволяют перемещать антенные решетки вручную или в автоматизированном режиме вдоль одной или двух осей координат. 
 
Выбор типа сканирующего устройства определяется параметрами объекта контроля.
 
Сканирующие устройства могут быть доукомплектованы аккумуляторным блоком управления сканером и прижимами для работы с дефектоскопами других производителей. Для специальных задач контроля могут быть разработаны специализированные СК.
 
СКАНИРУЮЩИЕ УСТРОЙСТВА  ДЛЯ ДЕФЕКТОСКОПА АВГУР-АРТ 
Ручное сканирующее устройствоРучное сканирующее устройство Ручное сканирующее устройство на магнитных колесах (варианты)Ручное сканирующее устройство на магнитных колесах (варианты) Ручное сканирующее устройство на магнитных колесах (варианты)Ручное сканирующее устройство на магнитных колесах (варианты) Сканирующее устройство для контроля кольцевых сварных соединений трубопроводов диаметрами 159 мм – 426 ммСканирующее устройство для контроля кольцевых сварных соединений трубопроводов диаметрами 159 мм – 426 мм
Сканирующее устройство для контроля кольцевых сварных соединений трубопроводов диаметрами от 426 ммСканирующее устройство для контроля кольцевых сварных соединений трубопроводов диаметрами от 426 мм Сканирующее устройство для контроля продольных сварных соединений (тип a)Сканирующее устройство для контроля продольных сварных соединений (тип a) Сканирующее устройство для контроля продольных сварных соединений (тип b)Сканирующее устройство для контроля продольных сварных соединений (тип b)
Сканирующее устройство для контроля кольцевых сварных соединений (тип а)Сканирующее устройство для контроля кольцевых сварных соединений (тип а) Сканирующее устройство для контроля кольцевых сварных соединений (тип b)Сканирующее устройство для контроля кольцевых сварных соединений (тип b) Двухкоординатное сканирующее устройствоДвухкоординатное сканирующее устройство
 

Настроечные образцы

Для проведения калибровки ФР, установленной на призму применяется настроечный образец:

Настроечный образец Т-Б-18-0-Ст20 (арт. TB0180033)

 
 
Для проведения настройки чувствительности, параметров визуализации системы применяются настроечные образцы в соответствии с требованиями методики контроля. 
 
 

РАЗРЕШЕНИЯ НА ПРИМЕНЕНИЕ

 

Дефектоскоп полностью соответствует требованиям стандартов и технических условий

oISO 18563-1:2015 NON-DESTRUCTIVE TESTING -- CHARACTERIZATION AND VERIFICATION OF ULTRASONIC PHASED ARRAY EQUIPMENT -- PART 1: INSTRUMENTS

oР Газпром 2-4.3-1166–2018 Сварка и неразрушающий контроль. Оборудование и материалы для подготовки, сборки и нагрева при выполнении сварочно-монтажных работ. Общие технические условия

oГОСТ Р 50.05.13-2019 Система оценки соответствия в области использования атомной энергии. Ультразвуковой контроль сварных соединений с применением технологии фазированных решеток. Порядок проведения

 
С помощью дефектоскопа реализуется работа по следующим методикам

840.44 М Методика ультразвукового контроля сварных соединений трубопроводов Ду300 с применением технологии фазированных решеток (РБМК)
МФАР.АЭ12.Т2M/2-К-11 Методика ультразвукового контроля композитных сварных соединений приварки патрубков уравнительных трубопроводов, приварки патрубков впрыска компенсаторов давления и приварки патрубков САОЗ корпуса реактора ВВЭР-440 к переходной втулке с применением технологии фазированных решёток
МФАР.АЭ12.Т2M/2-К-11 Методика автоматизированного ультразвукового контроля кольцевых аустенитных сварных соединений трубопроводов впрыска и трубопроводов сброса компенсатора давления реакторов ВВЭР-1000 с применением антенных решёток
Методика устанавливает порядок проведения неразрушающего ультразвукового контроля состояния металла кольцевых аустенитных сварных соединений трубопроводов впрыска и трубопроводов сброса компенсатора с применением антенных решеток. Она обеспечивает выявление, определение условных размеров и место положения несплошностей в сварном соединении, возникающих в период эксплуатации, при монтаже и ремонте.  
МФАР.АЭ12.Т0С/4-К-11 Методика автоматизированного ультразвукового контроля кольцевых разнородных (композитных) сварных соединений дыхательных трубопроводов 426х40 компенсатора давления реакторов ВВЭР-1000 с применением технологии фазированных решёток
Методика устанавливает порядок проведения неразрушающего ультразвукового контроля состояния металла кольцевых разнородных сварных соединений дыхательных трубопроводов 426х40 компенсатора давления реакторов ВВЭР-1000 с применением технологии фазированных решёток. Она обеспечивает выявление, определение условных размеров и место положения несплошностей в сварном соединении, возникающих в период эксплуатации, при монтаже и ремонте.
МФАР.АЭ12.П0С/9-К-11 Методика автоматизированного ультразвукового контроля разнородных (композитных) сварных соединений патрубков сброса пара и впрыска с патрубками компенсатора давления реакторов ВВЭР-1000 с применением антенных решёток
Методика устанавливает порядок проведения автоматизированного ультразвукового контроля разнородных сварных соединений патрубков сброса пара и впрыска с патрубками компенсатора давления реакторов ВВЭР-1000 с применением антенных решёток. Она обеспечивает выявление, определение условных размеров и место положения несплошностей в сварном соединении, возникающих в период эксплуатации, при монтаже и ремонте. Зона контроля включает наплавленный металл сварного шва(включая корень шва, линию сплавления и основной металл в прилегающий к области. Выявляются продольно ориентированные несплошности; возможно определение размеров несплошностей (высоты и протяженность вдоль сварного соединения).
MPA.AE.4.M0B.0.BL-12 Методика ультразвукового контроля прямолинейных и криволинейных соединений ГИП сталей 316L / ХМ19 для DO дивертора ИТЭР с применением антенных решеток
МФАР.АЭ12.П1Б/8-К-12 Методика ультразвукового контроля сварных соединений приварки коллекторов теплоносителя к корпусу парогенератора ПГВ-1000 с использованием технологии фазированных антенных решёток
Методика устанавливает порядок проведения автоматизированного ультразвукового контроля узла приварки коллектора к корпусу парогенератора ПГВ-1000 реактора ВВЭР-1000 с применением ультразвуковых антенных решеток. Она обеспечивает выявление и определение размеров  технологических и эксплуатационных несплошностей   продольной, поперечной, диагональной ориентации
МФАР.АЭ2.Т2М/2-К-13 Методика ультразвукового контроля сварных соединений аустенитных трубопроводов Ду300 с применением технологии фазированных решёток
Методика устанавливает порядок проведения неразрушающего ультразвукового контроля состояния металла кольцевых сварных соединений (СС) аустенитных трубопроводов и коллекторов Ду300 КМПЦ реактора типа РБМК-1000 с использованием технологии фазированных антенных решёток. Она обеспечивает выявление, определение местоположения и  измерение размеров – длины и высоты продольных несплошностей в СС, возникающих как при его монтаже или ремонте, так и в период эксплуатации.
МФАР.АЭ11.ПОМ/26-К-11 Методика ультразвукового контроля композитных сварных соединений приварки патрубков уравнительных трубопроводов, приварки патрубков впрыска компенсаторов давления и приварки патрубков САОЗ корпуса реактора ВВЭР-440 к переходной втулке с применением технологии фазированных решёток
Методика устанавливает порядок проведения неразрушающего ультразвукового контроля композитных сварных соединений приварки патрубков уравнительных трубопроводов, приварки патрубков впрыска компенсаторов давления РУ ВВЭР-440 В-230 и приварки патрубков САОЗ корпуса реактора РУ ВВЭР-440 В-219 к переходной втулке с применением технологии фазированных решёток. Она предназначена для выявления несплошностей, определения их отражающей способности, условных размеров и местоположения в сварном соединении, возникающих в в период эксплуатации, при монтаже и ремонте и имеющих продольную и поперечную ориентацию относительно оси сварного соединения.
Методика для ИТЭР Методика ультразвукового контроля прямолинейных и криволинейных соединений ГИП сталей 316L / XM19 для DO ИТЭР с применением антенных решеток.
Методика устанавливает порядок проведения неразрушающего ультразвукового контроля прямолинейных и криволинейных соединений ГИП сталей 316L / ХМ19 для DO дивертора ИТЭР с применением антенных решеток. Она предназначена для выявления несплошностей, определения их размеров и местоположения в объекте контроля, представлящем собой биметаллические образцы (316L / ХМ19) с ГИП–соединением и компонент стальной опоры DO дивертора ИТЭР. Выполняется контроль области, шириной  ± 5 мм прилегающей к границе раздела между свариваемых деталей. При этом обеспечивается выявление в зоне контроля несплошностей с отражательной способностью, соответствующей плоскодонному отражателю диаметром 2 мм.
ГОСТ Р 50.05.13-2019 Ультразвуковой контроль сварных соединений с примененим технологий фазированных решеток. Порядок проведения
МФАР-ТД-НХ1-120 Автоматизированный ультразвуковой контроль сварных соединений толщиной стенки от 8 до 120 мм с использованием дефектоскопов с фазированными решетками. Инструкция по проведению контроля
МФАР-НХ1-Т2М/12-Л-17 Автоматизированный ультразвуковой контроль аустенитных сварных соединений толщиной стенки от 5 до 20 мм с использованием дефектоскопов с фазированными решётками. Инструкция по проведению контроля
МТ 1.2.1.15.001.1085-2015. МТ  1.2.1.15.001.1086-2015. МТ 1.2.1.15.001.1087-2015 Сплошная ультразвуковая толщинометрия оборудования и трубопроводов энергоблоков атомных электростанций. Сборник методик СУЗТ.
МТ 1.2.1.15.001.0990-2014 Автоматизированный ультразвуковой контроль фазированными решётками разнородных и аустенитных кольцевых сварных соединений трубопроводов с толщинами стенки от 5 до 20 мм и диаметрами более 108 мм энергоблоков АЭС ВВЭР-1000 
МТ 1.2.1.15.001.1001-2016 Автоматизированный ультразвуковой контроль кольцевых сварных соединений обечаек парогенераторов с применением системы автоматизированного контроля с полным циклом автоматизации
МТ 1.2.1.15.001.0989-2014 Автоматизированный ультразвуковой контроль узла приварки коллектора теплоносителя к патрубку Ду1200 парогенераторов ПГВ-1000 с использованием технологии фазированных решеток. Методика.

 

 

Свидетельство об утверждении типа средств измерений АВГУР-АРТСвидетельство об утверждении типа средств измерений АВГУР-АРТ

Скачать полное техническое описание на дефектоскоп АВГУР-АРТ.pdf [2.02 Mb]
 

Примеры применения:

1. Контроль сварного соединения эксцентрика. Посмотреть

2. Контроль сварных соединений мостовых конструкций. Посмотреть
3. Применение фазоманипулированных сложных сигналов при контроле объектов с большим поглощением ультразвука. Посмотреть
 
4. Контроль угловых швов вварки штуцеров, фланцев, бобышек с применением ультразвуковых фазированных решеток. Посмотреть
 
5. Ультразвуковой контроль сварных соединений роторов. Посмотреть
©

Россия, 123458, Москва, ул. Твардовского д.8

«Технопарк «СТРОГИНО», ООО «НПЦ «ЭХО+»

Телефон / Факс (495) 780-92-50

E-mail: echo@echoplus.ru

Web: www.echoplus.ru

Техническая поддержка: support@echoplus.ru



_

Яндекс.Метрика

Наверх