В июле 2019 года в ходе работ на АО «Газпромнефть-ОНПЗ» (Омский НПЗ), г. Омск ООО "НПЦ "ЭХО+" совместно с ООО "СМСЛ" на промплощадке ЭЛОУ-АВТ были проконтролированы швы вакуумной колонны методами TOFD и фазированной антенной решетки в соответствии с требованиями пунктов 7.5.5.2, 7.5.5.3 ASMEBPVC Section VIII-Rules for Construction of Pressure Vessels Division 2 - Alternative Rules.


Проконтролированы как кольцевые, так и продольные сварных соединения. 

 

При контроле применялся дефектоскоп ГЕККОН и сканирующее устройство Мышь АВТО.

 

Контроль методами ФАР и TOFD на Омском НПЗ

 


Контроль методами ФАР и TOFD на Омском НПЗ
 
 

В марте-апреле 2019 ООО "НПЦ "ЭХО+" совместно с ООО "Атомкомплект" провело эксплуатационный контроль трубопроводов и оборудования энергоблока № 6 Нововороженской АЭС.
 
Силами специалистов ООО "НПЦ "ЭХО+" проведен автоматизированный ультразвуковой и телевизионный контроль сварных соединений и гибов трубопроводов ГЦТ, КД, САОЗ, емкостей парогенератора, компенсатора давления, системы аварийного охлаждения активной зоны. 
 
Получен бесценный опыт, который будет применен в дальнейшем при предэксплуатационном и эксплуатационном контроле на оборудовании энергоблоков, сооруженных по проекту АЭС-2006.
 
Участие в эксплуатационном контроле АЭС с применением проектных систем 

В презентации описаны основные сложности и пути их решения при ультразвуковом контроле сварных соединений приварки патрубков, фланцев и бобышек и вварки. Показана возможность применения технологии фазированных антенных решеток для УЗК указанных сварных швов. Достоверность контроля достигается за счет подбора параметров фазированной решетки и зоны сканирования, построения трехмерной модели объекта контроля. Такая технология может быть реализована с применением дефектоскопов АВГУР-АРТ или ГЕККОН.
 
Ультразвуковой контроль сварных швов приварки фланцев, бобышек и патрубков
 
 
Пример методики контроля толстостенного сварного соединения главной запроной задвижки (ГЗЗ) с применением продольных волн, отраженных от внутренней поверхности: публикация.
 
 

uglovyh-shvov-2.pdf [1.87 Mb]

Возможность отмены радиографического контроля при условии проведения автоматизированного ультразвукового контроля

Применение УЗК вместо РГК

 

 

ООО "НПЦ „ЭХО+" имеет богатый опыт по обоснованию замены радиографического контроля на ультразвуковой и предлагает эту услугу заказчику.

Основанием для замена РГК на УЗК может послужить: 
- требование сократить сроки выполнения монтажных работ
- требование к выявлению и мониторингу эксплуатационных дефектов — трещин
- наличие норм оценки качества, базирующихся на измерении протяженности и высоты дефекта
- невозможность дренировать трубопроводы для проведения РГК
 
При обосновании замены выполняется: 
- Анализ нормативной и конструкторской документациии
- Обзор литературы по решению задачи замены РГК на АУЗК для аналогичных объектов
- Выполнение математического моделирования
- Проведение АУЗК и сопоставление с результатам РГК на своих тест образцах или тест-образцах заказчика
- Подготовление итогового отчета и технического решения
 
Автоматизированный ультразвуковой контроль (АУЗК) проводится с записью результатов и позволяет определять геометрические размеры дефектов, что обеспечивает объективность контроля и возможность предъявления полученных данных. Эта особенность АУЗК позволяет во многих случаях отменять радиографический контроль сварных соединений трубопроводов при условии проведения АУЗК, то есть заменить радиографический контроль на АУЗК.
  
Так, на нескольких АЭС была произведена отмена 100% радиографического контроля после монтажа сварных соединений аустенитных трубопроводов категорий IIa, IIв, IIIa, IIIв IIIс при условии проведения на них АУЗК. Эта замена была оформлена соответствующими техническими решениями, диаметры аустенитных трубопроводов от 133 мм до 426 мм; толщина стенки от 14 мм до 40 мм; способ сварки – ручная аргонодуговая; марка основного металла свариваемых труб – 08Х18Н10Т и аналогичные, форма подготовки кромок – V-образная. АУЗК проводился по ранее утвержденным методикам, разработанным „НПЦ „ЭХО+" для АЭС для сварных соединений более высоких категории. При проведении АУЗК сварных соединений по упомянутым техническим решениям не выявлено недопустимых дефектов и соединения были допущены в эксплуатацию.

Для технологических трубопроводов ГОСТ 32569-2013 (Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах) п.12.3.7 допускает выбирать неразрушающего контроля (УЗК, радиографию или оба метода в сочетании). Это позволило ООО „НПЦ „ЭХО+" провести АУЗК сварных соединений на стадии монтажа на нефтеперебатывающих предприятиях ОАО «ТАИФ-НК" г. Нижнекамск (2017 г), ПАО «Орскнефтеоргсинтез" г. Орск (2017-2018 г.), АО «Газпромнефть-МНПЗ" г. Москва (2018-2019 г). Применение АУЗК было согласовано с заказчиками и позволило отказаться от остановки монтажных работ на время проведения контроля, что особенно важно для соединений диаметром более Ду300 и толщиной стенки более 20 мм.

Если при проектировании технологических трубопроводов используются нормы ASME B31.3 — 2016 Process Piping. ASME Code for Pressure Piping, проведение АУЗК также возможно. Так на ОАО «ТАИФ-НК" г. Нижнекамск (2017 г), ПАО «Орскнефтеоргсинтез" г. Орск (2017-2018 г.) был проведен АУЗК с применением системы АВГУР-Т на аустенитных сварных соединениях толщиной стенки до 63 мм и перлитных сварных соединениях с толщиной стенки до 90 мм согласно требованиям ASME B31.3 — 2016. При необходимости замена радиографического контроля может быть обоснована применением процедуры ASME Case 2235-9 Use of Ultrasonic Examination in Lieu of Radiography Section I; Section VIII, Divisions 1 and 2; and Section XII.
 
Для проведения неразрушающего контроля замыкающего шва реактора гидрокрекинга в 2010 году ООО "НПЦ "ЭХО+" также провело обоснование замены РГК на УЗК, поскольку имеющиеся камеры ренгенконтроля не позволяли вместить изделие целиком. Применялся документ ASME Case 2235-9. Контроль проводился методом акустической голографии с определением размеров дефектов и методом TOFD.
 
 
Примеры сопоставлений данных РГК и АУЗК. 
Данные получены с применением системы автоматизированного контроля АВГУР-ТФ.
 
 
Применение УЗК вместо РГК
Применение УЗК вместо РГК
Применение УЗК вместо РГК 
 

 
Публикации по теме:
 

1. Бадалян В.Г. Вопилкин А.Х. Радиография или ультразвук — что лучше? Скачать.pdf 
 
2. Бадалян В.Г., Самарин П.Ф. Расчет кривых вероятности выявления дефектов в сварных соединениях трубопроводов АЭС. Доклад. Презентация. 20-я Всероссийская конференция по неразрушающему контролю и технической диагностике. Скачать.pdf 
 
3. Тихонов Д.С. Методики автоматизированной ультразвуковой диагностики высокого разрешения с новыми информационными критериями оценки качества сварных соединений. Скачать.pdf
 
4. Вопилкин А.Х., Ромашкин С.В., Тихонов Д.С. Опыт применения автоматизированного ультразвукового контроля технологических трубопроводов из аустенитных сталей взамен радиографического контроля на примере строительства комплекса каталитического крекинга ООО «ЛУКОЙЛ-Нижегороднефтеоргсинтез" 
 

 


 



 
При эксплуатации трубопроводоа и оборудования уплотнительная поверхность фланцев подтвергается коррозионному износу из-за действия транспортируемой среды.
 
Применение технологии фазированных решеток для контроля уплотнительных поверхностей фланцев 
 

При подготовке к планово-предупредительному участка трубопровода желательно заранее знать - какие фланцы изношены и предназначены для замены.
Для проведения контроля состояния уплотнительной поверхности фланцев ООО "НПЦ "ЭХО+" предлагает применять технологию ультразвуковых фазированных решеток. Для контроля может быть использован дефектоскоп АВГУР-Арт или ГЕКККОН, поддерживающий как минимум 32, а желательнно 64 фазируемых канала - с целью обеспечить высокое разрешение при распространении ультразвука на большое расстояние.
 
Для этого по доступной поверхности фланца (например по конусной поверхности) выполняется сканирование специализированным сканером. При построении трехмерной модели фланца по чертежу обеспечивается идентификация плоскостей, от которых отражается ультразвуковой лучу и выполняется оценка состояния уплотнительной поверхности (степень износа). Для этого необходимо провести тренинг оператора на ряде модельных изображений дефектов.
 
Применение технологии фазированных решеток для контроля уплотнительных поверхностей фланцев
 
Применение специализированной методики позволяет прогнозировать какие детали трубопровода, будут предназначены для замены и даже избежать разборки фланцевых соединений.
 
 


Скачать дистрибутив:

 
 
После завершения установки потребуется отправить созданный файл на адрес support@echoplus.ru для генерации лицензионного ключа.
Пример данных для тестирования импортируется в базу данных при двойном щелчке на файл: Данные для импорта АВГУР-Анализ.adp

 
Программное обеспечение АВГУР-АНАЛИЗ разработано с использованием систем управления базами данных. Предназначено для хранения, визуализации, обработки, анализа данных ультразвукового контроля и формирования заключений по предварительно подготовленным шаблонам. Применяется в организациях, занимающихся ультразвуковым неразрушающим контролем.
 

Основные особенности программы АВГУР-Анализ:

  • Поддерживается импорт данных из множества систем ультразвукового контроля (Российских и импортных)
  • Измерительные маркеры
  • Анализ данных ФАР, ЦФА, TOFD
  • Редактор эскизов объекта контроля, отображение дефектограмм
  • А,В,С,D,S - развертки
  • Stripchart – представления данных контроля с синхронизированными маркерами
  • Полуавтоматическое образмеривание дефектов
  • Централизованная база данных контроля
  • Представление данных TOFD и обработка данных TOFD
  • Представление данных коррозии в виде карт толщины
  • Фильтрация, коррекция данных
 
 
Скачать буклет: -ANALIZ.pdf [1.76 Mb]
 
 
 
Программное обеспечение АВГУР-Анализ
Программное обеспечение АВГУР-Анализ
Программное обеспечение АВГУР-Анализ
Программное обеспечение АВГУР-Анализ
Программное обеспечение АВГУР-Анализ
Программное обеспечение АВГУР-Анализ
 
 
 

Видео примеры работы функций программного обеспечения АВГУР-Анализ

 
Работа функции полуавтоматического образмеривания дефектов:  

 
Работа функции представления данных в виде карты коррозии
 
 
 
Измерение разницы фаз бликов
 
 
 
Работа функций анализа данных TOFD


 

7-10 ноября 2018 года проведены испытания средств для сплошной ультразвуковой толщинометрии. 
 
Испытания проводились на Бованенковском НГКМ ООО "Газпром добыча Надым"Для решения задачи сплошной толщинометрии применялся дефектоскоп на фазированных решетках ГЕККОН и двухкоординатный сканер Хамелеон.


В мае 2014 года ООО "НПЦ "ЭХО+" выполнило поставку на ОАО "Силовые машины" установки для автоматизированного ультразвукового контроля с использованием технологии цифровой фокусирующей антенны кольцевых сварных соединений толщиной до 205 мм роторов сварных.

ООО «НЦП «ЭХО+» совместно с Dekra (Швеция) и Tecnatom (Испания) аттестованы методики и оборудование для выполнения сплошной ультразвуковой толщинометрии для ЛАЭС.  Объектом контроля являются перлитные трубопроводы питательной воды с внешним диаметром 159 – 426 мм и толщиной стенки 5,5 – 60 мм.

EDDYFI

EDDIFY (включает компанию M2M) разрабатывает, производит и продает ультразвуковые и вихретоковые дефектоскопы для неразрушающего контроля и медицинского применения. Современные технологии воплощены в совершенных приборах с дружественным пользовательским интерфейсом.  

GEKKKO (ГЕККОН). Ультразвуковой дефектоскоп на фазированных решётках

арт. D0170003

  Скачать брошюру.  Геккон.pdf [1.04 Mb]   Дефектоскоп Геккон зарегистрирован как тип средств измерений. Свидетельство об утверждении типа FR.C27.003.A № 66918.   FR.C27.003.A № 66918.pdf [3.19 Mb]   Скачать руководство по эксплуатиации на русском языке Rukovodstvo-po-ekspluatacii.pdf [12.83 Mb]  
    GEKKO  

Ультразвуковой дефектоскоп GEKKO на фазированных решётках 

Дружелюбный в использовании: ПО Gekko было разработано для операторов любого уровня. Пошаговый интерфейс меню упрощает работу и снижает риск ошибок. Интерефейс программного обеспечения переведен на русский язык.


Ультрасовременный! Gekko

первый в мире дефектоскоп на фазированных решётках, который выполняет Цифровую Фокусировку Антенны (ЦФА) с фазированными решётками в реальном времени

GEKKO 

также поддерживает большинство методов ультразвукового контроля и использует возможности последней версии программы моделирования CIVA

Прочный и удобный. 

Сенсорный экран, IP66 и работа от батарей, GeKKO разработан для полевого применения.

 

 

Построение изображения в режиме В-скан

 

Датчики на фазированной решетке (ФАР) состоят из множества пьезоэлектрических элементов, которые могут активироваться последовательно или с задержкой по времени. Акустические поля от нескольких элементов накладываются друг на друга (формируется так называемый виртуальный датчик). Таким образом полученное акустическое поле можно перемещать (линейное сканирование) или вращать его (секторное сканирование). Прибор позволяет генерировать как продольные, так и поперечные волны, а также поверхностные и головные. Электронная фокусировка акустического поля на заданной глубине или диапазоне глубин позволяет воспроизводить результаты В-сканирования (поперечное сечение перпендикулярно поверхности) с высоким разрешением.

 

  

 EDDYFI (M2M) - Ультразвуковые дефектоскопы ГЕККОН (GEKKO) и БОГОМОЛ (MANTIS)

 

 

 

Цифровая фокусировка антенны или TFM

 

EDDYFI (M2M) - Ультразвуковые дефектоскопы ГЕККОН (GEKKO) и БОГОМОЛ (MANTIS) 


 

Этот метод предусматривает взаимодействие всех элементов решетки и всех импульсов в конкретной области сканирования. В результате чего, если применяется датчик ФАР с 64 элементами, формируется В-скан с очень широким пространственным разрешением в пределах одной длины волны. В секунду возможно получение до 25 кадров, что обеспечивает изображение в реальном времени. Размер дефектов определяется при помощи курсоров. В примере показан В-скан ряда боковых отверстий диаметром 1.5м м пометоду TFM. В результате сканирования диаметр отверстий определен верно.

 

 

Трехмерная акустическая визуализация (3D-томография)

Путем механического перемещения линейного датчика ФАР формируется множество отображений В-сканов, что обеспечивает получение трехмерных данных. Эти данные могут быть визуализированы в так называемом С-скане (вид сверху исследуемого объекта). Передвигая вертикальный курсор в С-скане можно выбрать соответствующий В-скан. В В-скане для выбора соответствующего А-скана используется вертикальный курсор.

 


 

3D-результаты исследования: А-скан, В-скан, С-скан

     

 

Дефектоскоп GEKKO также позволяет осуществлять контроль изогнутых поверхностей. Эта функция делает возможным, к примеру, контролировать продольные сварные швы на трубах и сварные швы приварки патрубков. В- и С-сканы показывают точное расположение дефектов в пространстве.  

EDDYFI (M2M) - Ультразвуковые дефектоскопы ГЕККОН (GEKKO) и БОГОМОЛ (MANTIS)

EDDYFI (M2M) - Ультразвуковые дефектоскопы ГЕККОН (GEKKO) и БОГОМОЛ (MANTIS)
 
 

Меню

 

Интуитивный интерфейс меню дефектоскопа упрощает настройку параметров и работу с прибором

 

EDDYFI (M2M) - Ультразвуковые дефектоскопы ГЕККОН (GEKKO) и БОГОМОЛ (MANTIS)


Главное меню

 

Используя набор параметров в разделе «Мастер настройки»можно создавать пользовательские настройки. Эти

настройки можно сохранить в «Применениях ». Результаты измерений сохраняются в разделе «Инспекции». Набор

параметров из «Мастера настройки» удалить невозможно,что обеспечивает надежную исходную базу

 

 

Раздел "Оборудование"

 

-выбор объектов исследования

-выбор преобразователей

-выбор сканнеров и позиционных кодировщиков

Все параметры и фото могут быть сохранены и загружены

 

Меню "Параметры УЗ-контроля"

 

Настройка параметров для выбранного типа B

сканирования (линейное, секторное или TFMсканирование), расположение датчика для корректного покрытия акустического поля

-Выбор сектора захвата данных, включая тип,расположение и пороговое значение

- Настройка временной и угловой регулировки чувствительности ФАР, и одноэлементных датчиков 

 

 

 

Меню "Конфигурация"

 

Опции сканирования: выбор типа сканирования (по текущему времени или датчику положения), привязки к объекту, датчиков, а также групп датчиков, щоны сканирования и значения шага

-Опции отображения: выбор типа изображения (A-, B-, C-,D-скан), TOFD-скан

-Подготовка отчета исследования

 

Комбинация методов

Несколько датчиков могут работать параллельно и комбинация из нескольких задач может выполняться

одновременно. Для исследования сварных швов широко применяется двустороннее прозвучивание. Часто этот метод комбинируют с методом TOFD, что позволяет точно определить глубину залегания дефекта путем измерения разницы во времени возврата волн. Работа с несколькими датчиками предполагает наличие у сканера различных кареток для датчиков, а также позиционного кодировщика. Имеются как ручные, так и автоматизированные датчики.


 


 

Технические характеристики

Габаритные размеры

408 мм x 284 мм х 130 мм

Вес

6.6 кг( включая 2 акккумулятора)

Питание

2 Li-ionбатареи (возможна горячая замена)

Время работы от аккумулятора

Не менее 3,5 часа

Внутренняя память

128 Гб

Разъемы

1 IPEX разъем для датчика ФАР,

64 каналов

4 Lemo00 разъема для УЗК

3 входа для кодировщиков положения

1 VGAВыход

3 USB2

Ethernet,wifi

Дисплей

10.4"(диагональ)сенсорный

1024x768пкс.разрешение

яркость:400кд/m2

Генератор импульсов

Отрицательный прямоугольный импульс, от 30 до 1250 нс

10 до 100 В для ФАР

10 до200 В для обычного УЗК

Частота повторения импульсов: от 1 до 10 кГц

 

Макс. количество законов фокусировки

4069

Оцифровка по глубинам

 

до 65000 выборок

Диапазон частот

3.1 до 100 МГц

Сигнал

До 64 раз

Усиление

аналоговый 0to46dB

цифровой-40to+40dB

Входной импеданс

50Ω

Пропускная способность 3 дБ

0.55 до 14.3МГц для ФАР

0.60 до 2 5МГц для стандартного УЗК

 
 
 

Разрешительная документация:

  • ГОСТ Р 50.05.13-2019 Ультразвуковой контроль сварных соединений с примененим технологий фазированных решеток. Порядок проведения
  • СТО ГАЗПРОМ 2-2.4 - 083 - 2006 Инструкция по неразрушающим методам контроля качества сварных соединений при строительстве и ремонте промысловых и магистральных газопроводов 

 

Примеры применения:

1. Контроль сварных соединений мостовых конструкций. Посмотреть
2. Контроль угловых швов вварки штуцеров, фланцев, бобышек с применением ультразвуковых фазированных решеток. Посмотреть
 
3. Сплошная толщинометрия промысловых газопроводов. Посмотреть
 
4. Выявление водородного растрескивания с помощью ультразвуковых фазированных антенных решеток. Посмотреть
 
5. Ультразвуковой контроль резервуаров методами ФР и TOFD Посмотреть
©

Россия, 123458, Москва, ул. Твардовского д.8

«Технопарк «СТРОГИНО», ООО «НПЦ «ЭХО+»

Телефон / Факс (495) 780-92-50

E-mail: echo@echoplus.ru

Web: www.echoplus.ru



_

Яндекс.Метрика

Наверх